The Photochemical Cleavage of Friedelin

Takahiko Tsuyuki, Shûzô Yamada and Takeyoshi Takahashi

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo

(Received July 29, 1967)

We wish to report the formation of a series of compounds (II-VI) on the photolysis of friedelin.

A boiling solution of friedelin¹⁾ (I; 1.00 g) in ethanol was irradiated with a high pressure mercury lamp under a nitrogen atmosphere for 9 hr. The reaction products were separated by preparative thin layer chromatography (TLC). The main product was 3, 4-seco-ester*1 (II, R=Et; 732 mg). The formation of 4-isofriedelin*1 (III; 49 mg), 3β -friedelanol¹⁾ (IV; 11 mg), 3α -friedelanol²⁾ (V; 86 mg) and 3, 4-seco-acid*1 (II, R=H; 2 mg) was confirmed. A hydrocarbon (VI; 25 mg) was also isolated besides friedelin (I; 135 mg). The hydrocarbon (VI) showed two peaks on gas-liquid chromatography (GLC), though this compound gave only one spot on TLC (silica gel-silver nitrate). One of the peaks was shown to be due to 3-norfriedelane*1 (VIa) and the other would be due to 3nor-4-isofriedelane (VIb) (Cf. Experimental). However, no isolation of VIb has yet been furnished. The structure III was confirmed by alkaline isomerization to I.

1) E. J. Corey and J. J. Ursprung, J. Am. Chem. Soc., 78, 5041 (1956), and related papers.

2) a) N. L. Drake and S. A. St.

Refers to a new compound.

Friedelin (I; 1.00 g) in acetic acid-water (9:1) was heated under reflux and was photolyzed under the same condition as above for 27 hr. The product was mainly the acid (II, R=H; 883 mg) accompanied with the hydrocarbon mixture (VIa and VIb: 20 mg) and friedelin (I; 28 mg).

In ethanol solution, the formation of II (R= Et and H) and of hydrocarbons (VIa and VIb) could be interpreted by the known photochemical reaction processes.3) The formation of III would be explained by recombination of a diradical formed by α -cleavage (between positions 3 and 4) of I. A part of recovered friedelin (I) should be resulted from diradical recombination of alternative fashion. Furthermore, the photoreduction was concomitant to form a pair of friedelanols (IV and V).49 In the aqueous acetic acid solution, the formation of II (R=H) was predominant.

Experimental

Photochemical Cleavage of Friedelin in Ethanol.

The suspension of friedelin (1.00 g) in ethanol (600 ml) was heated under reflux with bubbling of nitrogen for 30 min. The solution was then irradiated with a high pressure mercury lamp (100 W) under a nitrogen atmosphere for 9 hr. Repeated separation of the products by preparative TLC (SiO2 and SiO2-AgNO3) afforded

the compounds (I)—(VI). 3, 4-Seco-ester (II, R=Et). 3, 4-Seco-ester was recrystallized from ethanol and then from acetone, mp 116.0-116.7°C.

Found: C, 81.40; H, 11.85%. Calcd for $C_{32}H_{56}O_2$: C, 81.29; H, 11.94%. This material was identical with the authentic sample in mp, TLC and IR spectrum. The authentic sample was obtained from friedonic acid (VII).2b,5) Huang-Minlon reduction of yielded 3, 4-seco-acid (II, R=H), mp 211°C.

Found: C, 80.77; H, 11.78%. Calcd for C₃₀H₅₂O₂: C, 81.02; H, 11.79%.

Esterification (EtOH-H2SO4) and recrystallization from ethanol and then from acetone gave the ester (II, R=Et), mp 116.3°C.

4-Isofriedelin (III). 4-Isofriedelin was recrystallized from petroleum ether, mp 257.5°C, $\nu_{C=0}$ 1706 cm⁻¹. The solution of III in dioxane was heated under reflux with sodium methoxide in methanol under a nitrogen atmosphere for 6 hr. GLC examination (Diasolid

N. L. Drake and S. A. Shrader, *ibid.*, 57, 5). b) N. L. Drake and W. P. Campbell, 1854 (1935). ibid., 58, 1681 (1936).

³⁾ Cf. R. O. Kan, "Organic Photochemistry," Mc-Graw-Hill, New York (1966), pp. 71—93, 222—223.
4) Cf. G. Quinkert, B. Wegement, F. Homburg and G. Cimbollek, Chem. Ber., 97, 958 (1964).
5) L. Ruzicka, O. Jeger and P. Ringnes, Helv. Chim. Acta, 27, 972 (1944).

H-523, 240°C) revealed that the most of III (t_R =36.6 min) isomerized to I (t_R =41.1 min). The isomerized product was purified by preparative TLC and recrystallization from petroleum ether. The IR spectrum, mp, mixed mp and R_f value on TLC were identical with those of friedelin (I).

3-Norfriedelane (VIa) and 3-Nor-4-isofriedelane (VIb). The hydrocarbon fraction was recrystallized from chloroform-methanol, mp \sim 210°C.

Found: C, 87.11; H, 12.49%. Calcd for $C_{29}H_{50}$: C, 87.36; H, 12.64%. The IR spectrum and R_f value on TLC (SiO₂-AgNO₃) were identical with those of the authentic 3-norfriedelane. However, two peaks appeared at t_R =12.5 and 13.4 min on GLC (Diasolid H-523, 240°C). The authentic 3-norfriedelane (VIa) was prepared as follows: Hydrogenation (5% Pd-

C/AcOEt) of 3-norfriedelene^{2b)} (VIII) proceeded mainly from α -side to afford the sole product, 3-norfriedelane*1 (VIa), mp 224°C (Found: C, 87.15; H, 12.41%. Calcd for C₂₉H₅₀: C, 87.36; H, 12.64%), which gave a single peak at t_R =13.4 min on GLC under the same condition, described above.

Photochemical Cleavage of Friedelin in Aqueous Acetic Acid. Friedelin (1.00 g) in acetic acid-water (9:1) (600 ml) was irradiated at reflux temperature under nitrogen with a high pressure mercury lamp (100 W) for 27 hr. Working up as before and 883 mg of the 3, 4-seco-acid (II, R=H), mp 214.5—215.0°C, 20 mg of the hydrocarbon mixture (VIa and VIb), mp \sim 212°C, (Found: C, 87.40; H, 12.77%. Calcd for $\text{C}_{29}\text{H}_{50}$: C, 87.36; H, 12.64%) and 28 mg of friedelin (I) were obtained.